UNIVERSITY OF

Southampton

Evaluation of a Guideline by Formal
Modelling of a Cruise Control System
in Event-B

Sanaz Yeganefard, Michael Butler and Abdolbaghi Rezazadeh

users.ecs.soton.ac.uk/mjb
www.event-b.org
www.deploy-project.eu

School of Electronics and Computer Science
University of Southampton, UK e

l«[eplo;
NFM, 13-15 April 2010

Overview

Managing complexity
— Abstraction and refinement
— Event-B and Rodin

— Sources of system complexity

Outline of a “Cookbook” for abstraction and refinement

Applying “cookbook” to Cruise Control System
— Initial Model
— Six level of Refinement

Evaluation and Future Work

Abstraction

Abstraction can be viewed as a process of simplifying our
understanding of a system.

The simplification should
— focus on the intended purpose of the system
— ignore details of how that purpose is achieved.

The modeller should make judgements about what they believe to
be the key features of the system.

Working with system level reasoning:

— Involves abstractions of overall system not just software components
— Emphasise left hand of V process

Refinement

Refinement is a process of enriching or modifying a model
in order to

1. augment the functionality being modelled, or

2. explain how some purpose is achieved

We can perform a series of refinement steps to produce a
series of models M1, M2, M3, ...

Consistency of a refinement:
— We use proof to verify the consistency of a refinement step

— Failing proof can help us identify inconsistencies in a refinement
step

Event-B (Abrial)

e State-transition model (like ASM, B, VDM, Z)
— set theory as mathematical language

 Refinement (based on action systems by Back)
— events: guarded actions
— data refinement
— one-to-many event refinement
— new events (stuttering steps)

* Proof method

— Refinement proof obligations (POs) generated from
models

— Automated and interactive provers for POs

Rodin Open Tool Platform

Extension of Eclipse IDE
Open source development

Rodin Builder manages:
— Well-formedness + type checker
— Consistency/refinement Proof Obligation generator
— Proof manager: automated and interactive proof
— Propagation of changes

Extension points supports plug-ins
— model-checking, simulation, code generation, UML-B,...

www.event-b.org

Sources of System Complexity

control laws

— change acceleration to maintain speed, ...
operator commands

— change target speed, suspend, resume, ...
operator interface

— buttons, pedals, gearstick ...
interaction with other features

— engine management, braking, gearbox,...
faults and fault management

— sensor faults, actuator faults, etc, ...
architecture

— multi-tasking, distribution, bus, signal evaluation, sensors, actuation, ...

Where to start modelling?
What is the right abstraction?
How do we treat various sources of compexity?

“Cookbook” for control systems
(Butler)

Guidelines for abstraction and refinement of control
systems in Event-B

Influenced by Parnas 4-variable model
Abstract models focus on environment phenomenon

Central role of system operator (e.g., driver) is
addressed

Refinement patterns for introducing

— sensing

— actuation

— command activation

Four-variable model (Parnas)

 Environment variables
— Monitored variables (speed)
— Controlled variables (acceleration)

* Controller variables
— Input variables (sensed speed)
— QOutput variables (accelerator actuation value)

Requirements

* NAT (for nature)

— describes how monitored variables are influenced
by controlled variables (assumptions)

* REQ

— describes required values of controlled variables
in response to monitored variables (guarantees)

Design

In design, we introduce

* IN

— relates monitored variables to input variables

 OUT

— relates output variables to controlled variables

Patterns

* Modelling patterns
— Automonous controller (NAT and REQ)

— Commanded controller

* Refinement patterns
— Separate control and actuation (OUT)
— Separate sensing and control (/N)
— Introduce command activation

Autonomous controller model

e Variables
— Monitored variables

— Controlled variables

e Events

— Plant events: modify the monitored variables
(NAT)

— Control events: modify the controlled variables
(REQ)

Commanded Controller Model

e Commanded variable: value determined by
operator (e.g., target speed, cruise status)

e Command: modify a commanded variable
(e.qg., tip-up, switch-off)

e Extension of autonomous model with

— Commanded variables (cmv): can influence control
events

— Command events (CMD): modify commanded
variables

Applying modelling pattern to cruise
control

Monitored: speed
Controlled: acceleration
Operator: target speed, status (on, standby, off)

Feature elaboration refinements:
— elaborate events for changing target speed

— elaborate events for changing status through
acceleration/clutch or braking pedals

— elaborate events for gears and gear change
— clear identification of different cases

Introducing pedals (in more detail)

Pressing accelerator - temporary suspension
of CCS.

Releasing accelerator - CCS regain the control
of car speed.

Pressing brake or clutch - permanent
suspension.

Driver can suspend CCS to regain the control
of car speed.

Diagrammatic representation
(using Jackson Problem Frames)

Autonomous Controller Controller Plant

cmy,

CMD Operator

Commanded Controller Controller

Plant

Refinement pattern | :
separate control and actuation (OUT)

C
Controller Plant
Ca C
Controller Actuator Plant
| [-]
Event refinement: —

[DCN] ACT

Refinement pattern |

* For controlled variable c, introduce actuation
variable c,

 Abstract control events: CTL
CTL = c := E(m,c)

e Refined events
DCN =
ACT =

= E(m, c,) /* refines skip */

Ca
C: /* refines CTL */

:Ca

Refinement pattern Ib

* More generally, CTL will have several cases:
CTL; = when G,(m,c) then c:=E(m,c) end

e Cases will be in the refined decision events:

DCN, when G,(m, c,) then c,:=E(m, c,) end
ACT

c:=c, /[*refines merge of all CTL, */

Refinement pattern Il :
separate sensing and control (IN)

Controller Sensor Plant

[SEN] DCN

Refinement pattern Il

 For monitored variable m, introduce sensed
variable m,

e Abstract decision events:
DCN. = when G,(m,c,) then c,:=E(m, c,) end

 Refined events
SEN = m.:=m
DCN. = when G,(m_, c,) then c,:=E(m_, c,) end

Refinement pattern Il :

introduce operator requests

Controller

CMD_RSP

Button

CMD_REQ

[CMD_REQ] [CMD_RSP]

Operator

Cruise control — applying refinement
patterns

1. Introduce actuation

— distinguish determination of acceleration (internal)
from actuation of acceleration (external)

2. Introduce sensing

— distinguish actual speed from sensed speed stored in
controller

3. Introduce buttons

— Separate operator request for some command from
the effect of that command

— Deal with overloading multiple functions on same
button

Evaluation of cookbook

ldentifying monitored, controlled and commanded variables at
the abstract level
— Provides a lot of structure and focus for modeller

Introducing sensing, actuation and buttons using patterns was
straightforward

Proofs were all automatic
— because of small refinement steps
— main proofs: correctness of refinements

No treatment of feature augmentation in original guideline
Variable categorisation sometimes fuzzy

— e.g., gear is monitored from CCS viewpoint, but commanded from a
system viewpoint

Treatment of buttons in original guideline not general enough

Future Work

Decomposition to distributed architecture: separation of the
platform, the environment and the software application
concepts.

Traceability links between requirements and Event-B models
Addressing limitations of the guidelines

— timing

— fault tolerance

— operator command interface (buttons, pedals, ...)

— operator display

Application to other automotive and avionics case studies

Real time...
... or lack of real time

Control goal: maintain vehicle speed within bounds

Control strategy: sample speed periodically and adjust acceleration
according to some control laws

We focus on modelling and refining strategy and also dealing with
operator interactions

— for this we don’t need real-time, only event ordering

Our experience with CCS is that operator interaction is a major
source of complexity

— itis all discrete so is easily dealt with using Event-B

Verifying the strategy satisfies the goal does require real-time

